$f_1,f_2,\dots,f_n\in\mathbb C[x],x_1,x_2,\dots,x_n\in \mathbb C$ 化简 $\text{det}(f_j(x_i))_{1\leq i,j\leq n}.$
$f_1,f_2,\dots,f_n\in\mathbb C[x],x_1,x_2,\dots,x_n\in \mathbb C$ 化简 $\text{det}(f_j(x_i))_{1\leq i,j\leq n}.$
因为我们只考虑 $f_j$ 在 $x_1,\dots,x_n$ 的取值。利用插值多项式,我们总可以假设 $f_j$ 的次数小于等于 $n$.
设 $$f_j(x) = \sum_{k=0}^{n-1} a_{kj} x^k$$
那么 $$\begin{pmatrix}f_1(x_1) & \cdots & f_n(x_1) \\ \vdots & \ddots & \vdots \\ f_1(x_n) & \cdots & f_n(x_n) \end{pmatrix}= \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} \cdot \begin{pmatrix} a_{01} & a_{02} & \cdots & a_{0n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \end{pmatrix}$$
所以 $$\det(f_j(x_i)) = \det(A) \cdot \prod_{1 \le i < j \le n} (x_j - x_i)$$